Roche and Catalent team up in $600m conjugation tech deal

By Dan Stanton

- Last updated on GMT

Image: iStock/BamBamImages
Image: iStock/BamBamImages
Roche has collaborated with CDMO Catalent to access the SMARTag protein-modification and conjugation technology in a deal that could be worth up to $618m (€568m).

The Swiss Pharma firm is a pioneer in the antibody-drug conjugation (ADC) field, with its subsidiary Genentech being the developer of one of only two such products on the market (Kadcyla).

In the agreement with Catalent, the firm is looking to develop next-generation molecules coupling different therapeutic modalities through use of the site-specific protein-modification and linker technology SMARTag.

“We have multiple ongoing pharma partnerships, but see this deal with Roche as an important collaboration for our SMARTag platform,”​ VP of Catalent Biologics, Mike Riley, told Biopharma-Reporter.com.

The platform itself was developed by Redwood Bioscience, acquired by Catalent in 2014​, and the contract development and manufacturing organisation (CDMO) will perform certain work in this deal primarily through the Redwood subsidiary based in Emeryville, California. 

Riley added the agreement is part of his firm’s flexible model,”​ which includes licensing the “SMARTag technology for partners to perform internal development and manufacturing [while still having] the ability to leverage our beginning to end suite of technologies, such as our GPEx platform, analytical services, biologics manufacturing, regulatory support, clinical packaging and supply services to support our partner’s path to clinic.”

Roche is paying Catalent $1m upfront, but Catalent has the potential to receive up to $618 million in development and commercial milestones.

HIPS tech

As part of the deal, Roche will access the highly stable hydrazino-Pictet-Spengler (HIPS) conjugation technology within the SMARTag platform.

This is a proprietary chemistry that provides a highly stable carbon-carbon linkage between the protein and the rest of our linker/payload,”​ Riley explained. “We believe this is a strong differentiator for our platform, as it ensures our conjugates are highly stable.”

Biomolecule conjugation is traditionally done with hydrazide or aminooxy nucleophiles under acidic conditions to yield hydrazone or oxime products that are relatively stable, yet susceptible to hydrolysis.

However, HIPS has certain advantages over this, according to Redwood​, exhibiting a combination of product stability and speed near neutral pH that is “unparalleled by current carbonyl bioconjugation chemistries.”

Related news

Show more

Related products

show more

Difco TC Yeastolate UF in scale-up optimization

Difco TC Yeastolate UF in scale-up optimization

Content provided by Thermo Fisher Scientific Gibco Culture for Bioprocessing | 16-Oct-2023 | White Paper

Review the impact of—not only adding peptones as a supplement to your cell culture—but also the importance of concentration and timing as a feed strategy...

Related suppliers

Follow us

Webinars

Follow us